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PREFACE

Part of the research program of The RAND Corporation

consists of basic supporting studies in mathematics, one

aspect of which is concerned with optimization processes.

This Memorandum is concerned with optimal control of

dynamic systems involving random variables. Optimal

control rules are developed and evaluated.

Optimization is particularly important in determin-

ing rocket trajectories and correcting deviations in

flight from the predetermined trajectory.
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SUMMARY

The optimal control of stochastic systems is con-

sidered. Under various assumptions concerning the informa-

tion available to the controller, different optimal control

rules result. For certain specific problems, the different

control schemes are analyzed and compared, and the vast

superiority of feedback over open-loop control is demonstrated.
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SOME TYPES OF OPTIMAL CONTROL
OF STOCHASTIC SYSTEMS

1. INTRODUCTION

A stochastic system (i.e., a dynamic system involving

random variables) which evolves according to a rule which

also involves variables or parameters under external con-

trol, is called a stochastic control system. If these

variables or parameters are determined so that the system

behaves as well as possible as measured by some well-

defined criterion, one has achieved optimal control of

the stochastic system.

Under varying assumptions concerning the information

available to the controller, different optimal control

policies result. In this Memorandum we shall develop and

illustrate several different control schemes and compare

their behavior. In this way we intend to demonstrate

that certain control philosophies that may appear super-

ficially to be equivalent, are really quite different.

In the final section we derive asymptotic expressions for

the cost of optimal control using several different schemes.

This yields a quantitative measure of the vast superiority

of feedback over open-loop control for a particular

stochastic system.
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2. A DETERMINISTIC PROBLEM

Let us begin by considering a trivial three-stage

discrete deterministic control problem. Given the directed

network shown below,

A

0 12

12 ,

Figure 1

we wish to determine that path from point A to line B

which has the minimal sum of the numbers written along

the three arcs of the path.

Let us denote a decision to follow the diagonally-up

arc from an intersection by U and the diagonally-down

arc by D. By examining all eight possible paths from

A to B, we discover that the path D-U-D (diagonally down,
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then up, then down) has sum-of-arc-numbers zero and is

the unique optimal solution. We shall call such a designa-

tion of the solution, giving the sequence of control

decisions to be followed from specific initial point to

termination, the optimal open-loop control

A second way of presenting the solution to this prob-

lem is to associate with each node of the figure a decision,

either U or D, such that that decision is the initial one

of the optimal path from the node to the terminal line.

This set of decisions assigned to nodes is most efficiently

determined recursively backwards from the terminal line [1].

We initially record the optimal decisions and minimal

sum to termination (encircled) at the nodes along the line

C in the figure below,
D C B

I

AI

I III

i o I

Figure 2
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and then use the circled numbers to determine the optimal

decisions and sum along D and, finally, from A. The re-

sulting figure is

B

AI
Dor

Figure 3

We shall call such a designation of the solution, giving

the optimal decision associated with starting at each

possible state of the system (i.e., at each node), the

feedback optimal control.

The interpretation of Fig. 3 is that the optimal path

starting at point A has sum zero and starts diagonally

down. The node reached after making the downward move has
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a U written by it, indicating a decision to go diagonally

up. This leads to a node with a down decision. Hence,

D-U-D is the optimal path from A. Note that the feedback

representation of the solution also yields the best path

starting from other nodes not along the D-U-D path.

The important point is that for a specified initial

point such as A, the open-loop and feedback solutions

are equivalent for a deterministic process.

3. A STOCHASTIC PROBLEM

Let us now modify the above problem by introducing a

stochastic aspect. We shall assume that the decision

designated by U results in a probability of 3/4ths of

moving diagonally up and 1/4th of moving down. The alter-

native decision, D, has a 3/4ths chance of a diagonally

downward move and a 1/4th chance of an upward transition.

We now have a stochastic control problem. We can still

exert a controlling influence, but randomness determines

the actual transformation of state.

As a criterion for comparing possible control schemes,

let us attempt to minimize the expected sum along the

path from A to line B.

To determine the best open-loop control policy, we

consider all eight possible sequences of decisions and

choose the one with minimal expected sum. For example,

the decision sequence U-U-U has probability 27/64ths of
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actually yielding the path U-U-U with sum 5, 9/64ths proba-

bility of yielding the path D-U-U with sum 1200, etc.

Multiplying the probabilities by the sums and a'ding, we

get an expected sum EUUU given by

Euu U --1 5 + - (1200 + 1205 + 5) + (5 + 0 + 12)

+ 12 a! 360.

It turns out that the sequence D-D-D has the minimal ex-

pected sum of approximately 120.

The best feedback control is computed recursively

backwards just as in the deterministic example. Suppose

that, for a given node, the expected sums starting at each

of the two possible nodes to which one might go have been

determined. Then the expected sum from the given node to

the termination under decision U is obtained by multiplying

the upward arc number plus the remaining expected sum

associated with the node at the end of the up-arc by

3/4ths and adding 1/4th times the corresponding downward

numbers. Decision D is similarly evaluated reversing the

3/4ths and 1/4th, and the minimal expected sum is chosen.

The minimizing decision and expected sum (encircled) are

recorded at the node. This computation leads to the

figure below:
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I B

i U or D

A o

Figure 4

The expected sum using feedback control is 81 and the

control policy is the set of letters associated with the

nodes in Fig. 4.

At this point we would like to introduce a third

control scheme. Let us use the optimal open-loop solution to

yield our initial decision. Then, after a transition has

occurred, let us observe the result and determine the

best open-loop solution for the new two-stage problem.

', After implementing the initial control decision of this

ii optimal open-loop solution, we again observe the state



-8-

and use the optimal control decision for the remaining

one-stage problem. This scheme uses the optimal open-loop

initial decision at each stage, but incorporates feedback

in the observation of the actual state attained. We call

this scheme open-loop-optimal feedback control.

This control scheme differs from either of the pre-

vious two. The initial optimal open-loop decision agrees

with the feedback decision except for starting at node A.

There, as has been shown, the optimal open-loop control

dictates a downward decision. Therefore, the expected

cost of the above scheme is

1 .80 + .84 - 83.

We can conclude from this example that

1) The pure open-loop scheme incorporating no use

of subsequent information about actual transitions

yields a large expected sum;

2) The pure feedback scheme where the state is as-

sumed known when the decision is made yields the

smallest possible expected sum for a stochastic

problem;

3) The open-loop-optimal feedback scheme yields an

intermediate expected sum. Although feedback is

used, the fact that feedback is to be used is

withheld from the computation determining the

control decisions, which results in an inferior

control scheme.
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4. A CONTINUOUS DETERMINISTIC PROBLEM

Let us now consider briefly a standard continuous

non-stochastic control problem. Given an initial time

to and final time T, we wish to use control u(t),

to f t 5 T, so as to guide a particle, initially in state

Xo, toward the origin x - 0. We attach a cost to using

control and attempt to minimize the criterion function

T
J u 2 (t)dt + x2 (T) (4.1)
to

where the first term represents the cost of control and

the second term measures the deviation from the origin at

the terminal time. Motion of the particle is given by the

linear differential equation

x(t) - ax(t) + bu(t) . (4.2)

This is a linear control problem with quadratic criterion,

and has been much analyzed. We consider it briefly here

in order to acquaint the reader with the type of problem

we shall consider subsequently and with the dynamic pro-

gramming technique of solution.

The classical necessary conditions for an extremum

of the above problem are given in terms of an adjoint

variable or Lagrange multiplier X which satisfies the

equation
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X- -aX (4.3)

and terminal condition

X(T) - 2x(T) . (4.4)

The optimal control is given by the condition

2u + Xb - 0. (4.5)

Solution of (4.3) with boundary condition (4.4) yields

X(t) - 2x(T)ea (T-t) (4.6)

and therefore,

u (t) - -x(T)bea(T-t) (4.7)

so u(t) varies exponentially with time. The unknown

terminal value of x, x(T), can be expressed in terms of

x(t) by substituting the control rule (4.7) in (4.2) and

solving. The resulting expression for x(t) in terms of

x(T) can be inverted, and the control at time t is then

given in terms of the state at time t by equation (4.7).

Performing these steps we get



x t) ) +a(T-t)

x(t) x(t )e(tto) + e

- T) 2 ea(T' 2 to+t) (4.8)

b2 12 a-

x(tb2 + b2 e2a(T )) e'a(T'to) x(T) (4.9)

x(T) - e(T-t) x(t) (4.10)
b2 +b e2a(T-t)

u(t) be 2 a(T-t) x(t) (4.11)
b2  b2 e2a(T-t) (1 - + 7-a

This is the feedback solution for control as a function

of state. The optimal control is exponential in time, or,

for a given time, it is a linear function of the state.

The dynamic programming solution of this problem

proceeds as follows: Define an auxiliary function f(x,t)

as the minimal obtainable value of the criterion function

(4.1) if we start the problem in state x at time t,

to 9 t ' T. By the principle of optimality linking the

initial decision with the remaining optimal decisions, we

have

f(x,t) - minu(t) [u 2 (t)dt + f(x+(ax + bu)dt, t + dt) .(4.12)u (t)
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Expanding (4.12) in Taylor series, divic'ing by dt and

letting dt approach 0, we get

S (ax + bu) + f (4.13)

Differentiating with respect to u to minimize gives

2u + bix - 0 (4.14)

and substituting u determined by (4.14) in (4.13), we

obtain the non-linear partial differential equation

b 2 20 -x + ax a + . (4.15)

Assuming f(xt) has the separable form g(t)x2 and sub-

stituting in (4.15), we find that g(t) satisfies the

Riccati ordinary differential equation

- b 2g 2 (t) + 2ag(t) + g'(t) - 0 (4.16)

with

g(T) - 1 . (4.17)

Solution of this equation yields
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g e2a (T-t) (.8
g(t) - + e~'Tt ; (4.18)

b bz e2a(T-t)+ e
1 -a 7AW

whence

f(xt) - e2a (Tt) x
2

2 bZ 2a (T-t)

1 - + 7 + e

Substitution in (4.14) yields the control scheme

u (t) be2a (T-t) 't' (4.20)b2  bz e2a (T-t)

which agrees with (4.11). Again, as in Sec. 2, we see

that for a deterministic problem the open-loop and feed-

back solutions are equivalent.

5. A CONTINUOUS STOCHASTIC PROBLEM [2-5J

To construct a stochastic control problem, we attach

a random variable to the equation defining the evolution

of x. We write the discrete rule

x(t+At) -x(t) + [ax(t) + bu(t)] At + 9(t) (5.1)

where 9(t) is a stochastic process with, for all t,
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(1) E (W(t) = 0 (5.2)

(2) E (g2(t)) _ a2At (5.3)

(3) . (,n(t)) _ o(At), n ) 2 (5.4)

(4) 9(tl), ... , (tn) are independent for (5.5)

any finite collection of distinct

times tl, ... , tn

where E is the expected value operator, a2 is a constant,

and x - o (At) means the limit as At - 0 of X is zero.

The limiting process as At 0 is the continuous control

problem we shall consider. Our criterion function to be

minimized is

E u2 (t)dt + x2(T) (5.6)
to

the expected cost of control plus terminal deviation.

The optimal open-loop control is deduced by consider-

ing all possible functions u(t), to 9 t S T, and choosing

the one that minimizes the criterion (5.6). The cost of

control integral is deterministic. Furthermore, if x(T)

is viewed, at the initial time to, as a random variable

dependent upon u(t), one notes that the variance 2x(T)
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of this random variable is independent of u(t). Since the

expected value of the square of a random variable is its

mean squared plus its variance, we have

E(x 2 ( T ) ) _ [E(x(T))] 2 + 02 x (T) (5.7)

so we wish to choose that u(t) which minimizes

T
f u2dt + [E(x(T))] 2 (5.8)
to

Due to the linearity of the equation of evolution (5.1),

the expected value of x(T) is the value of x(T) that re-

sults from integrating (5.1) with forcing function u(t)

and with the stochastic process 9(t) replaced by its mean

value at each time, zero. Hence, our problem reduces, for

the special assumptions of linear equations and quadratic

criterion, to precisely the deterministic problem that we

solved in the previous section.

This observation leads to a fourth control scheme,

called certainty equivalent control E6]. This scheme re-

places the random variables in the stochastic problem by

their expected values and solves the resulting deterministic

control problem. Certainty equivalent control is seen to

be equivalent to optimal open-loop control in the above

example.

To obtain the open-loop-optimal feedback control for
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the above problem, we express the control as a function

of state, as was done in equation (4.11), and use that

control having observed the state transition. The actual

realization of the control function then depends upon the

realization of the stochastic process; one expects this

scheme to perform better than the pure open-loop solution.

The pure feedback control law can be derived by

dynamic programming. One defines f(x,t) as the minimal

value of (5.6), and writes

f(xt) - min E Fu2 At + f(x + (ax + bu) Atu L
+ g, t + At)J (5.9)

Hence, expanding in series and taking expectations using

(5.2) through (5.5),

0 min [u2 + af (ax +bu) +1 a2bf + f] (5.10)"u TX 7 +1 IT 5.0

Therefore,

b TX_--2- (5.11)

and we must solve the equation

+ . (5.12)
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Letting

f(xt) - g(t)x 2 + h(t)

g(T) - 1 (5.13)

h(T) - 0

we find that g(t) satisfies the same equation, (4.16), as

in the deterministic case. Since the optimal control only

involves g(t), we have the same control rule as in Sec. 4,

but not the same expected cost, due to the h(t) term re-

flecting the cost of the randomness. Hence, the optimal

feedback control duplicates the open-loop-optimal feedback

scheme.

These equivalences of various control schemes are

unusual and are the result of our many assumptions of

linearity and quadraticity. In the next section we shall

modify the problem slightly and demonstrate the dis-

similarity of the four different control philosophies we

have distinguished.

6. ANOTHER CONTINUOUS STOCHASTIC PROBLEM

We now modify the above problem slightly. We assume

that the variance of the random variable in equation (5.1)

depends upon the control decision, with no randomness in

the evolution of x if no control is exerted. This assump-

tion reflects reality in many applications. We replace

(5.3) by the equation
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E(9 (M u2 2At (6.1)

where a2 is a constant. We neglect the cost of control

integral in the objective function (5.6), since the cost

of control is now reflected in the uncertainty attendant

upon the use of control. Our criterion function is now

merely

E [2 (T)] .(6.2)

For simplicity, we take a - 0 in the equation of evolution

(5.1), and use the continuous limit of

x(t + At) - x(t) + Ebu(t)] At + 9(t) . (6.3)

We first consider optimal open-loop control. The

variance of the random variable x(T) as viewed at time to

is

T
S u2(t) a2 dt (6.4)
to

and the criterion function equals

T

[E(x(T))] 2 + f u2 2 dt (6.5)
to

By the same reasoning as above, the expected value of
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x(T) is the value yielded by replacing the random variable

9 at each time t by its mean, zero. We therefore have

the same problem as in Sec. 4 and Sec. 5, except for a

factor a2 in the criterion function and no ax term in the

equation of motion. The adjoint variable X(t) is, in this

case, a constant with terminal value 2E(x(T)). The optimal

control is given by

u(t) -- i(x(T))b (6.6)
CZ

and is a constant function of time. Expressed in terms

of state, we have

u(t) - - W 2 (6.7)

b(T-t + 2.)
b

which, as before, is linear in the state at a given time.

Using open-loop control, the expected terminal value of

x., if we start at time to in state x(to), is

E[x(T)] G2 x(t0) (6.8)
b2 (T-to b-

and the variance of the random variable x(T) is given by

( 2 (to) (T-t o ): o2  ... .(6.9)

b2 (T-t + az 2
0 b7

I.b



-20-

Hence, the value of the criterion function is given by

FE, 'T 1  + a

E 2(Tl] - [(xT)2 + x2 02 (t 0 ) (6.10)
x Lx/ x(T) Wb

2 (T-to + b)

We next analyze the open-loop-optimal feedback control

scheme. This involves using the rule (6.7) for control as

a function of state. The equation of motion becomes

x(t + At) - x(t) - t) At + g(t) . (6.11)

(T - t +bJ)

If we define f(xt) as the expected value of x 2(T) using

the above rule, we have

f(xt) . E f(x x At +I
b2 +A , t) (6.12)

T - t +b-

which, after series expansion, letting At -0, and taking

the expectation, gives

0 +x f x 2 2  a2f +f

T- t +b 022b
2 (T- t +-2)2

b

(6.13)
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Letting f(xt) have the form

f(x,t) - g(t)x 2  (6.14)
g(T) 1

we obtain the linear homogeneous equation for g(t)

g'(t) 1 b2 + 7 - 2 g(t) - 0 (6.15)

Tb- t + L b2(T- t +a

so that

1~~t -x T -22 dT
f~xt)Im ex Jt T T + b 2(T - T + 2)

7 7(6.16)

= x2 exp 1C1 + 2 log 0
2 - 2 log (T - t + .

b2 (T - t + b) b

(6.17)

To evaluate the expected terminal x value, given that we

start in state x(to) at time to, we can solve equation

(6.13) with solution of the form

f(x,t) g(t)x (6.18)

g(T) -
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obtaining

E [x(T)] -2
2 x•(t) (6.19)

b2 (T -to +2)
b7

This result is the same as the pure open-loop result (6.8),

which is explained by the linearity of the process.

Analysis of the feedback scheme begins with the defini-

tion of f(x,t) as the value of the criterion if we start

in state x at time t, to : t ! T , and use an optimal

policy. By the principle of optimality, we have

f(xt) mu E [f(x + (bu) At + 9 , t + At)] (6.20)

which yields

0 .rmin [u af+ U22af+ af(6.21)= 6 x --= =ax- 7- "

Hence, setting the derivative with respect to u equal to

zero to minimize,

b af
u 87 (6.22)

02 62f

and, substituting (6.22) in (6.21),
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27 f

Setting

f (xt0 g M x 2  (6.24)

g (T) -1

we get

0 ;7-- g (t) + g(t . (6.25)

Solving for g(t),

f (x, t) - e G7 x2  (6.26)

bx (6. 27)

If we now define h(x,t) to be the expected terminal x

value starting in state x at time t and using control

(6.27), we can characterize h(x,t) by

h(x,t) At h~ + t, t + At) (6.28)

where the boundary condition is now
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h(x,T) - x . (6.29)

Letting

h(x,t) - g(t)x (6.30)

g(T) 1 1

we find

- b (T-t)

h(x,t) e x . (6.31)

The final control philosophy we have mentioned above

is certainty equivalent control, the optimal control for

the deterministic system that results from replacing all

random variables in the stochastic problem by their ex-

pected values. This yields the problem: Choose u(t) so

that x(T) given by

x(t) = bu(t) (6.32)

x(t o ) M xo

minimizes the expression

x2 (T) . (6.33)
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A little reflection shows that x(T) can be made zero by

any of an infinite class of controls, and 'the problem is

therefore not meaningful.

We are now in a position to recapitulate our results.

Foremost is the conclusion that the four different con-

trol schemes give four different optimal control rules.

For open-loop control we have a rule given as a function

of time and, naturally, dependent upon to, x(to), and T.

This rule, which never depends upon the realization of the

stochastic process and which, in our particular example,

is a constant function of time, is (by equations (6.6) and

(6.8))

u(t) - - x 7t•)(6.34)
b(T-t o + Z-

The open-loop-optimal feedback control law is expressed ri

a function of current state and time and depends upon the

realization of the stochastic process. It does not depend

explicitly on the initial state or time. This law is

(equation (6.7))

u(t) =  x(t) . (6.35)

b(T-t +b-)
b

Note that this law is the same as (6.34) initially (for

state x(to) at time to) and that it duplicates (6.34) if
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and only if the stochastic process takes on its mean value,

zero. The feedback control law depends on the current time

and state, just as does the above scheme. However, due to

the fact, stressed earlier, that the optimization mathe-

matics is aware of the feedback nature of the control, we

get a law different from (6.35); namely (equation 6.27)

u(t) bx W (6.36)

which, in this particular case, does not happen to depend

explicitly on the current time. The certainty equivalence

concept, as noted earlier, is inappropriate here and yields

no unique control law.

If we examine the asymptotic behavior of the criterion

function for a long process (T - -) starting at time zero

in state xo, we see that the expected value of x2 (T) ap-

proaches zero in all cases. This is because for a long

process very little control is exerted at any particular

time, hence there is little randomness and we can steer

assuredly toward the origin. The nature of the approach

to zero as a function of the length of the process, T, is

significant. For open-loop control the approach is inverse-

linear, with (equation 6.10)

E [x 2 (T) 0 T -1 • (6.37)

Ib
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For open-loop-optimal feedback control we have inverse-

square convergence, with (equation 6.17)

E x2 (TJ ~ T-2  (6.38)

Finally, the feedback control scheme yields negative-

exponential convergence (equation 6.26)

.b
2

E [x2(T)] e T x2 (6.39)

Both the open-loop and open-loop-optimal feedback

schemes can be expected to reach the same terminal x value

(equations 6.8 and 6.19), but due to its feedback nature,

the latter scheme has less variance associated with it.

The pure feedback control has an expected terminal value

much closer to the origin (equation 6.31) since one can

aim closer with the assurance that deviations resulting

from the randomness caused by the greater control will be

corrected later. Examining the control rules themselves

for a fixed initial point, one finds that the pure feedback

scheme calls for greater control. This can be explained

by the fact that the feedback scheme can afford to aim closer

to the origin in the assurance that overshooting due to

randomness can be caught and corrected. While the open-

loop-optimal feedback scheme will also catch and correct

overshoot, the computation of the control rule is not
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cognizant of this fact and is, therefore, more conservative.

Pure open-loop control, of course, will not compensate.

7. CONCLUSION

We see than that for any but the simplest stochastic

problems, the various control philosophies that are equiva-

lent for deterministic problems are quite dissimilar.

Further, we have obtained some quantitative idea of the

relative behavior and performance of several different

optimal control schemes.



1-29-

REFERENCES

1. Dreyfus, S. E., "Dynamic Programming," Chap. 5, Progress
in Operations Research, Vol. 1, R. L. Ackoff, ed.,
John Wiley and Sons, New York, 1961.

2. Bellman, R. E., Adaptive Control Processes: A Guided
Tour, Princeton University Press, Princeton, New
J-rsey, 1961.

3. Florentin, J. J., "Optimal Control of Continuous Time,
Markov, Stochastic Systems," J. Electronics & Control,
Vol. X, No. 6, June 1961, pp. 473-488.

4. Kushner, H. J., "Optimal Stochastic Control," Corres-
pondence. IRE Transactions on Automatic Contol
ctober 1962, pp. 120-122.

5. Fleming, W. H., "Some Markovian Optimization Problems,"
J. Math. & Mech., Vol. 12, No. 1, January 1963,
pp. 131-140.

6. Theil, H., "A Note on Certainty Equivalence in Dynamic
Planning," Econometrica, Vol. 25, No. 2, April 1957,
pp. 346-349.


